An operator corona theorem for a class of subspaces of H

نویسنده

  • Amol Sasane
چکیده

Let E, E∗ be separable Hilbert spaces. If S is an open subset of T, then AS(L (E, E∗)) denotes the space of all functions f : D ∪ S → L (E, E∗) that are holomorphic in D, and bounded and continuous on D ∪ S. In this article we prove the following main results: 1. A theorem concerning the approximation of f ∈ AS(L (E, E∗)) by a function F that is holomorphic in a neighbourhood of D∪S and such that the error F −f is uniformly bounded in the disk D. 2. The corona theorem for AS(L (E, E∗)) when dim(E) < ∞: If there exists a δ > 0 such that for all z ∈ D ∪ S, f(z)f(z) ≥ δI, then there exists a g ∈ AS(L (E∗, E)) such that for all z ∈ D ∪ S, g(z)f(z) = I. 3. The problem of complementing to an isomorphism for AS(L (E, E∗)) when dim(E) < ∞ (Tolokonnikov’s lemma): f ∈ AS(L (E, E∗)) has a left inverse g ∈ AS(L (E∗, E)) iff it is a ‘part’ of an invertible element F in AS(L (E∗)). 4. A corona theorem for A(L (E, E∗)) when dim(E) = ∞, and the corona data function f is a ‘small’ perturbation of a ‘nice’ function f0. MSC numbers: 30H05 (primary), 46J15, 47A56 (secondary)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

USING FRAMES OF SUBSPACES IN GALERKIN AND RICHARDSON METHODS FOR SOLVING OPERATOR EQUATIONS

‎In this paper‎, ‎two iterative methods are constructed to solve the operator equation $ Lu=f $ where $L:Hrightarrow H $ is a bounded‎, ‎invertible and self-adjoint linear operator on a separable Hilbert space $ H $‎. ‎ By using the concept of frames of subspaces‎, ‎which is a generalization of frame theory‎, ‎we design some  algorithms based on Galerkin and Richardson methods‎, ‎and then we in...

متن کامل

On the relations between the point spectrum of A and invertibility of I + f(A)B

Let A be a bounded linear operator on a Banach space X. We investigate the conditions of existing rank-one operator B such that I+f(A)B is invertible for every analytic function f on sigma(A). Also we compare the invariant subspaces of f(A)B and B. This work is motivated by an operator method on the Banach space ell^2 for solving some PDEs which is extended to general operator space under some ...

متن کامل

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

Analytic Projections, Corona Problem and Geometry of Holomorphic Vector Bundles

The main result of the paper is the theorem giving a sufficient condition for the existence of a bounded analytic projection onto a holomorphic family of (generally infinite-dimensional) subspaces (a holomorphic sub-bundle of a trivial bundle). This sufficient condition is also necessary in the case of finite dimension or codimension of the bundle. A simple lemma of N. Nikolski connects the exi...

متن کامل

A characterization of orthogonality preserving operators

‎In this paper‎, ‎we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$‎. ‎We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator‎. ‎Also‎, ‎we prove that every compact normal operator is a strongly orthogo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006